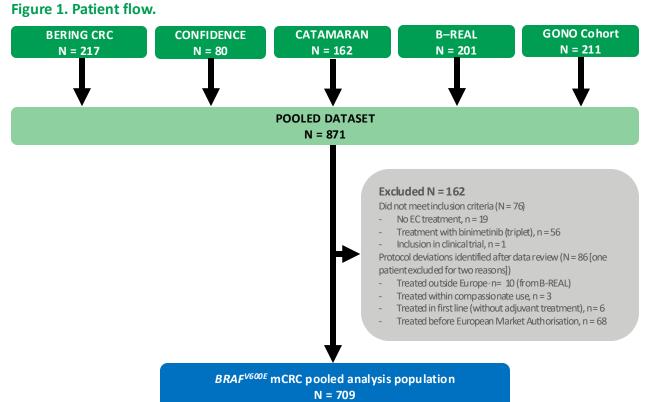
Real-world use of encorafenib + cetuximab (EC) in patients with BRAF^{V600E}-mutant metastatic colorectal cancer (mCRC): a pooled analysis of European observational studies

C. Cremolini^{1*}, J. Taieb², E. Martinelli³, A. Fernandez Montes⁴, E. Elez Fernandez⁵, M. Koopman⁶, H. Attar⁷, F. Beghdad⁸, F. Carrère⁹, S. Stintzing¹⁰

¹Department of Translational Research and New Technologies, University of Pisa, Pisa, Italy; ²Gastroenterology and Digestive Oncology Department of Precision Medicine, University of Pisa, Pisa, Italy; ³Department of Precision Medicine, University of Pisa, Pisa, Italy; ⁴Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Ourense, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Medical Oncology, Boulogne-Billancourt, France; Real World Evidence and Data, Pierre Fabre Oncology, Boulogne-Billancourt, France; Real World Evidence and Data, Pierre Fabre Oncology, Boulogne-Billancourt, France; Biometry, Institut de Recherche Pierre Fabre, Boulogne-Billancourt, France; 10 Hematology, Oncology, and Cancer Immunology (CCM) Department, Charité – Universitaetsmedizin Berlin, Berlin, Germany

Introduction


- Approximately 8–12% of patients with metastatic colorectal cancer (mCRC) have a BRAFV600E mutation, [1] which is associated with limited response to conventional therapies and a poor
- The European Society for Medical Oncology (ESMO) guidelines for mCRC recommend encorafenib + cetuximab (EC) after prior systemic therapy as standard of care for these patients. [4]
- While some real-world data from this rare patient population are available, [5-9] additional data would allow a better understanding of the disease and assist in improving patient care; in particular, combining data from several real-world studies would provide a large and centralised dataset from which robust conclusions could be drawn.

Methods

- This was a retrospective, longitudinal pooled analysis of five European real-world observational studies (BERING CRC [Austria/Germany/Switzerland]; B-REAL [France], CATAMARAN [the Netherlands], CONFIDENCE [Spain], Italian GONO Cohort [Italy]) conducted between 2020 and 2024.
- Data from all adults (aged ≥18 years) who received EC after prior systemic therapy for BRAF^{V600E}-mutant mCRC in each study were pooled.
- The data were collected from the date of EC initiation (with some data collected at initial CRC diagnosis) to the end of the observation period in each study (end of follow-up or death, whichever occurred first).
- Clinical and patient characteristics, treatments patterns and sequencing, BRAF testing, and effectiveness and safety of EC were evaluated.
- The study was conducted according to the Guidelines of Good Pharmacoepidemiology Practices (GPPs) issued by the International Society for Pharmacoepidemiology (ISPE), the Declaration of Helsinki and its amendments, the European Union General Data Protection Regulation (EU GDPR), and any applicable national guidelines.
- Patient data were pseudonymised and, according to applicable regulations, patients were informed that their data would be reused.

Results

• The pooled analysis population was comprised of 709 patients (Figure 1), of whom 54.4% were female, 65.9% had a right-sided tumour, and 70.9% had synchronous disease at initial diagnosis (Table 1).

Table 1. Baseline demographic and clinical characteristics of the study cohort.

racteristic	N = 709
ex, n (%)	n = 708
Male	323 (45.6)
Female	385 (54.4)
ge at EC initiation, years ^a	
Median (range)	65 (26–90)
ge category at EC initiation, years	
≤60	247 (34.8)
60 to <70	223 (31.5)
≥70	239 (33.7)
COG PS at EC initiation, n (%)	n = 637
0–1	502 (78.8)
0-1 ≥2	135 (21.2)
	(-)
rimary tumour histology, n (%)	n = 515
Carcinoma ^b	505 (98.0)
Medullary carcinoma	1 (0.2)
Signet ring cell carcinoma	6 (1.2)
Other	3 (0.6)
umour sidedness, n (%)	n = 707
Right	466 (65.9)
Left	235 (33.2)
Both	6 (0.8)
urgery for primary tumour, n (%)	
Yes	394 (55.6)
No	315 (44.4)
ime to metastases, n (%)	
Metachronous	206 (29.1)
Synchronous	503 (70.9)
ime from colorectal cancer diagnosis to EC initiation ^c , months	
Median (range)	13.5 (1.1–177.1)
ime from mCRC diagnosis to EC initiation ^d , months	n = 547
Median (range)	9.9 (0.1–122.3)
lumber of metastatic sites at EC initiation ^e , n (%)	n = 708
1	259 (36.6)
2	239 (30.0)
≥3	219 (30.9)
	213 (30.3)
letastatic site at EC initiation ^f , n (%)	n = 679
Liver	425 (62.6)
Peritoneum	361 (53.2)
Lymph nodes	181 (26.7)
Lung	147 (21.6)
Brain	10 (1.5)
Other ^g	109 (16.1)

nosis)/30.4375. For BERING CRC, GONO, CONFIDENCE and B-REAL, the number of metastatic sites was derived based on raw metastases locations; for CATAMARAN, collected number w d. Patients could report multiple sites. Other sites in cluded bone, ovary, skin, pancreas, adrenal gland, local recurrence, abdominal wall, and bladder. CRC, colorectal cancer; EC, encorafen ib + cetuximab; ECOG PS, Eastern Cooperative Oncology Group performance status; mCRC, metastatic colorectal cancer.

- All patients in the study cohort had a BRAF^{V600E} mutation.
- The most commonly used tissue for BRAF testing (details available for 194 patients) was archival primary tumour (76.8%), with the most commonly used testing methods being next generation sequencing (61.1%), polymerase chain reaction (16.1%) and immunohistochemistry
- Microsatellite instability (MSI) testing was performed in 90.8% of patients prior to EC treatment initiation, and 9.2% of these patients had tumours that were MSI-high.
- The median time from mCRC diagnosis to EC initiation was 9.9 months.
- Most patients (66.1%) initiated EC as second-line therapy, with 21.3% receiving it as third-line and 7.9% as fourth-line or later; 4.7% of patients received EC after prior systemic treatment (early relapse during or after adjuvant treatment).

Effectiveness

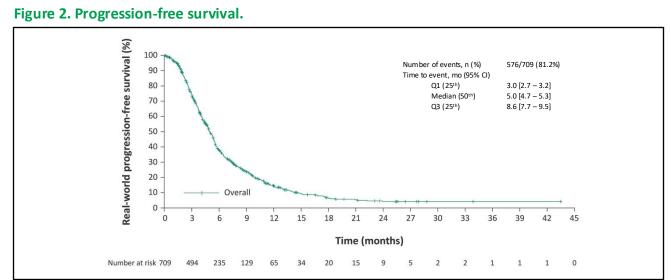
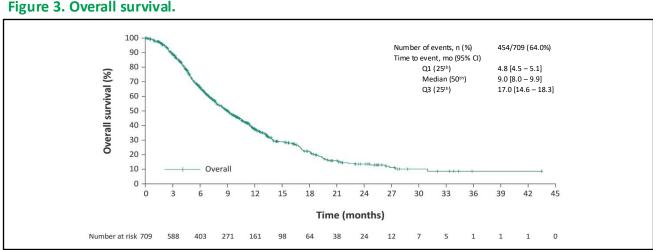

• In the patients who could be assessed, the overall response rate (complete response + partial response) was 28.0% (**Table 2**).

Table 2. Treatment activity of encorafenib + cetuximab.

Response, n (%)	Analysis population (N=709)
Complete response	7 (1.4)
Partial response	131 (26.6)
Stable disease	180 (36.5)
Progressive disease	157 (31.8)
Not evaluable	18 (3.7)
Missing ^a	216


^aTumor response not collected for 164 patients in CATAMARAN and 43 patients in BERING CRC. Data were missing for 9 patients (3 patients in B-REAL and 5 in GONO)

- Median progression-free survival (PFS) was 5.0 (95% confidence interval [CI] 4.7–5.3) months (Figure 2).
- PFS rates (95% CI) at 6, 12, and 24 months were 38.1% (34.4–41.9), 14.4% (11.7–17.5), and 4.2% (2.4–6.7), respectively.

- At a median (95% CI) follow-up of 14.3 (13.2–16.3) months, median overall survival (OS) was 9.0 (95% CI 8.0–9.9) months (**Figure 3**).
- OS rates (95% CI) at 6, 12, and 24 months were 66.5% (62.7–70.0), 37.4% (33.3–41.4), and 13.6% (10.1–17.6), respectively.

Figure 3. Overall survival.

CI, confidence interval; Q, quartile.

Key findings on prognostic factors

- Good prognostic factors:
 - Prior primary tumour resection (hazard ratio [HR] 0.77, 95% CI 0.6–0.9)
 - Absence of liver metastases (HR 0.77, 95% CI 0.6–0.9)
 - ECOG PS <2 (HR 0.66, 95% CI 0.5–0.9)

Poor prognostic factors:

- Synchronous metastases (HR 1.29, 95% CI 1.05–1.60)
- ECOG PS ≥2 (HR 2.74, 95% CI 1.85–4.07)
- ≥3 metastatic sites (HR=1.30, 95% CI 1.07–1.58)

Poor prognostic factors:

- Synchronous metastases (HR 1.55; 95% Cl 1.2–2.0)
- ECOG PS ≥2 (HR 4.96, 95% CI 2.7–9.3)
- ≥3 metastatic sites (HR 1.38, 95% CI 1.1–1.8)

- Safety data were collected from 547 patients; no new safety signals were observed.
- During EC treatment, 85.2% of patients had at least one adverse event (AE) of any grade.
- Most patients experienced AEs of low grade; 27.4% experiencing at least one AE that was grade ≥3.
- The most frequent AEs of any grade (in >10% of patients) were fatigue (21.9%), decreased appetite (19.7%), asthenia (19.0%), nausea (18.1%), anaemia (17.2%), arthralgia (12.6%), rash (12.6%), skin toxicity (11.9%) and vomiting (10.8%).
- The most frequent AEs of grade ≥3 were anaemia (2.9%), asthenia (2.7%), general physical health deterioration (1.5%), abdominal pain (1.5%), decreased appetite (1.3%), and intestinal obstruction, upper abdominal pain, nausea, vomiting and arthralgia (1.1% each).

Conclusions

- This analysis of data from the largest available real-world cohort of European patients with BRAF^{V600E}-mutant mCRC underscores the aggressive nature of this type of disease, and the need for molecular testing at diagnosis to ensure an optimal treatment strategy.
- The effectiveness of EC in the study cohort was consistent with the efficacy results of the phase III BEACON CRC study.[10, 11]
- Prior primary tumour surgery and absence of liver metastases were associated with more favourable PFS outcomes in EC-treated patients; Presence of synchronous metastases, multiple metastatic sites and higher ECOG are linked with poorer prognoses for PFS and OS.
- No new safety signals were observed.

Acknowledgments

- All authors contributed to and approved this poster. Professional medical writing and editorial assistance was provided by Kate Palmer of Springer Health+

Conflicts of interest

Advisory board or consultant role with Astra Zeneca, Bicara Therapeutics, BMS, GSK, Lilly, Merck, Mirati, MSD, Nordic Pharma, Roche, Pfizer, Pierre Fabre, Revolution Medicine, Rottapharm, Takeda, and Tempus. Invited speaker with compensation for Amgen, Bayer, Merck Serono, MSD, Pierre Fabre Servier, Takeda; Research grants by Amgen, Merck, Pierre Fabre, Roche, Seagen (Pfizer), Servier, and Tempus.

References

- Martinelli E., Arnold D., Cervantes A., et al., European expert panel consensus on the clinical management of BRAF (V600E)-mutant metastatic colorectal
- cancer. Cancer Treat Rev, 2023. 115: p. 10254: Tran B., Kopetz S., Tie J., et al., Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer.
- Cancer, 2011. 117(20): p. 4623-32. Loupakis F., Ruzzo A., Cremolini C., et al., KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13
- Br J Cancer, 2009. 101(4): p. 715-721 Cervantes A., Adam R., Rosello S., et al., Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol,
- 2023.34(1): p. 10-32.
- Stintzing S., Virchow I., Muller-Huesmann H., et al., Encorafenib plus cetuximab in patients with metastatic, BRAF V600E-mutated, colorectal carcinoma: First effectiveness data of the European multi-centric, multi-national, non-interventional study—BERING-CRC [abstract 3551]. J Clin Oncol, 2024. 42. Zwart K., van Nassau S., van der Baan F.H., et al., Efficacy-effectiveness analysis on survival in a population-based real-world study of BRAF-mutated
- meta static colorectal cancer patients treated with encorafenib-cetuximab, Br.J. Cancer, 2024, 131(1): p. 110-116. Boccaccino A., Borelli B., Intini R., et al., Encorafenib plus cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: real-life data from an Italian multicenter experience. ESMO Open, 2022, 7(3): p. 100506.
- Germani M.M.. Vetere G., Santamaria F., et al., Treatment of patients with BRAF(V600E)-mutated metastatic colorectal cancer after progression to encorafenib and cetuximab: data from a real-world nationwide dataset. ESMO Open, 2024. 9(4): p. 102996.
- 9. Gallois C., Bergen E.S., Auclin E., et al., Efficacy and safety of the combination of encorafenib/cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer:
- an AGEO real-world multicenter study. ESMO Open, 2024. 9(9): p. 103696. 10. Kopetz S., Grothey A., Yaeger R., et al., Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med, 2019. 381(17):
- 11. Tabernero J., Grothey A., Van Cutsem E., et al., Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol, 2021. 39(4): p. 273-284.